Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Year range
1.
Journal of Bacteriology and Virology ; : 87-95, 2017.
Article in English | WPRIM | ID: wpr-71194

ABSTRACT

It was previously observed that recombinant flock house virus (FHV) RNA1 was efficiently packaged into turnip yellow mosaic virus (TYMV), provided that the TYMV coat protein (CP) sequence was present at the 3′-end. FHV RNA encapsidated by TYMV CPs also had a four-nucleotide extension at the 5′-end. Since even a short extension at the 5′- and 3′-ends of FHV RNA1 inhibits replication, we examined whether the recombinant FHV RNA is indeed capable of replication. To this end, we introduced constructs expressing recombinant FHV RNAs into the plant Nicotiana benthamiana. Northern blot analysis of inoculated leaves suggested abundant production of recombinant FHV RNA1 and its subgenomic RNA. This demonstrated that recombinant FHV RNA with terminal extensions at both ends was competent for replication. We also showed that the recombinant FHV RNA can express the reporter gene encoding enhanced green fluorescent protein.


Subject(s)
Blotting, Northern , Brassica napus , Capsid Proteins , Genes, Reporter , Plants , RNA , Tobacco , Tymovirus
2.
Medicina (B.Aires) ; 76(4): 199-203, Aug. 2016.
Article in English | LILACS | ID: biblio-841576

ABSTRACT

The origin of life is a very rich field, filled with possibilities and ripe for discovery. RNA replication requires chemical energy and vesicle division is easy to do with mechanical energy. These requirements point to a surface lake, perhaps at some time following the period of concentrated cyanide chemistry that gave rise to nucleotides, amino acids and (maybe) fatty acids. A second requirement follows specifically from the nature of the RNA replication cycle, which requires generally cool to moderate temperatures for the copying chemistry, punctuated by brief periods of high temperature for strand separation. Remarkably, lakes in a geothermal active area provide just such a fluctuating temperature environment, because lakes similar to Yellowstone can be generally cool (even ice covered in winter), but they contain numerous hydrothermal vents that emit streams of hot water. Protocells in such an environment would occasionally be swept into these hot water streams, where the transient high temperature exposure would cause RNA strand separation. However, the protocells would be quickly mixed with surrounding cold water, and would therefore cool quickly, before their delicate RNA molecules could be destroyed by heat. Because of the combination of favorable chemical and physical environments, this could be the most likely scenario for the early Earth environment that nurtured the origin of life.


El origen de la vida es un campo lleno de posibilidades, listas para ser descubiertas. Basados en lo conocido sobre modelos de sistemas de membranas y sobre ARN, se comienza a deducir algunas características necesarias del entorno inicial. La replicación del ARN requiere energía química y la división de la vesícula es fácil de hacer con la energía mecánica. Estos requisitos apuntan a la superficie de un lago, en algún momento después del período en que la química del cianuro concentrado dio origen a los nucleótidos, aminoácidos y (tal vez) ácidos grasos. Un segundo requisito surge de la naturaleza del ciclo de replicación del ARN, que requiere temperaturas moderadas para la química de la copia, interrumpidas por breves períodos de alta temperatura para la separación en hebras. Solo lagos en una zona de actividad geotérmica proporcionan un ambiente de temperatura tan oscilante, lagos similares a Yellowstone pueden ser frescos (cubiertos de hielo en invierno), pero contienen numerosas fuentes hidrotermales que emiten chorros de agua caliente. Las protocélulas, en un ambiente así, de vez en cuando serían barridas en estas corrientes de alta temperatura, que podrían causar la separación transitoria de ARN de cadena. Pero las protocélulas serían mezcladas con rapidez en la zona de agua fría, y enfriarse antes de que sus delicadas moléculas de ARN fueran destruidas por el calor. La combinación de estos ambientes químicos y físicos favorables serían el escenario más probable del medio ambiente de la Tierra temprana que nutrió el origen de la vida.


Subject(s)
RNA/chemistry , Evolution, Chemical , Geothermal Energy , Origin of Life , Lakes , Cold Temperature , Hot Temperature
3.
Journal of Bacteriology and Virology ; : 193-201, 2007.
Article in Korean | WPRIM | ID: wpr-195144

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV), a member of the genus Arterivirus in the family Arteriviridae, is the most important viral pathogens in swine industry worldwide. Here, we have investigated 5' and 3' cis-acting RNA elements required for PRRSV genome replication. Using the infectious PRRSV cDNA, we have manipulated the genomic RNA to generate mutant genomic RNAs, transfected these mutants into susceptible MARC-145 cells, and examined the competence of RNA replication. We found three genetic factors that were essential for viral replication. First, the cap structure present at the 5'-end of the genome was absolutely required for RNA replication. Secondly, polyadenylation of the genomic RNA at the 3'-end was also essential for RNA replication. Thirdly, approximately 100-nucleotide region just upstream of the N protein-coding region was crucial for genomic RNA replication. Taken together, our findings indicate that replication of PRRSV genomic RNA requires three important cis-acting RNA elements: 5' cap structure, 3' poly(A) motif, and an internal sequence of about 100 nucleotides. Further investigation is needed to elucidate the molecular mechanism(s) of how these elements act on PRRSV genome replication.


Subject(s)
Humans , Arteriviridae , Arterivirus , DNA, Complementary , Genome , Mental Competency , Nucleotides , Polyadenylation , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , RNA , Swine
4.
The Korean Journal of Internal Medicine ; : 109-116, 2000.
Article in English | WPRIM | ID: wpr-30249

ABSTRACT

BACKGROUND: Although the polyproteins of hepatitis C virus(HCV) are processed and formed in nearly equimolar amounts, individual functional proteins have a discrepancy in their time of appearance following HCV infection and eliciting immune response. This study was conducted to compare the reactivity toward regional specific HCV protein in relation to virological characteristics, including HCV genotype and HCV replication. METHODS: Sera from forty-five patients with chronic HCV infection were analyzed through the experiments of the recombinant immunoblot assay(RIBA-2), HCV genotyping and HCV RNA quantitation. RESULTS: The frequencies of seropositivity to C22-3, C33C, C100-3 and 5-1-1 proteins were 91.1+ACU-, 91.1+ACU-, 64.4+ACU- and 53.3+ACU-, respectively, of all the patients, and thus the antibodies to C22-3 and C33C proteins were found more frequently (p +ADw- 0.05). The antibody responses between core or NS3 proteins and NS4 proteins showed more discrepancy in the HCC group than that in the CH group, implying a possibility of oncogenic potential of core or NS3 gene in hepatocarcinogenesis. The detection rate of antibodies to C22-3 and C33C, in accordance with serum HCV RNA levels, was significantly higher in highly viremic patients than that in low viremic patients (p +ADw- 0.05). Antibodies to C22-3, C33C, C100-3 and 5-1-1 were also found more frequently in patients with HCV genotype 1b, compared to those with HCV genotype 2a (p +ADw- 0.05). CONCLUSION: These results suggest that antibody detection of HCV may depend on the virological characteristics of HCV, the levels of HCV replication and HCV genotype and, therefore, HCV RNA detection using RT-PCR technique is essential for confirmatory diagnosis for HCV infection. Furthermore, the HCV core or NS3 Protein may play important role in hepatocarcinogenesis.


Subject(s)
Adult , Aged , Female , Humans , Male , Genotype , Hepatitis C Antibodies , Hepatitis C, Chronic/virology , Hepatitis C, Chronic , Hepacivirus/physiology , Hepacivirus/genetics , Middle Aged , RNA, Viral/blood , Viral Core Proteins , Viral Nonstructural Proteins , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL